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The nonconventional, industrially important yeast
Ogataea/Hansenula polymorpha is an object of inten�
sive genetic and molecular biology studies [1–11]. Its
thermotolerance, methylotrophy, and active fermen�
tation of glucose and xylose are attractive. The interest
in the study of these yeasts as potential producers of
ethanol fuel from lignocellulose wastes of agriculture
and woodworking industry has grown in recent years
[7, 12, 13]. Conversion of lignocellulose into ethanol
usually proceeds in two steps. During saccharification,
the feedstock is treated with cellulases and hemicellu�
lases at an elevated temperature (45–50°C) optimal
for the functioning of hydrolytic enzymes. The second
step is microbiological fermentation of the sugars from
lignocellulose hydrolysates into ethanol. The econom�
ically sound combination of the processes of hydroly�
sis and fermentation requires thermotolerant strains
[14].

The taxonomic position of methylotrophic yeasts
has been frequently revised and their genus and species
status has been reconsidered. Based on the 18S and
26S rRNA gene sequencing, methylotrophic yeasts
have been attributed to three novel genera: Ogataea,
Kuraishia, and Komagataella [15, 16]. The data of
genetic analysis demonstrated the heterogeneity of the
O. polymorpha taxon combining several closely related
sibling species [17–19]. The subsequent phylogenetic
analysis of molecular markers confirmed the existence

of this complex of biological species [20–23]. At
present, three closely related species have been
described: O. polymorpha (syn. O. thermophila Peter
et al. [24]), O. angusta, and O. parapolymorpha. The
positions of cactus isolates [25–27] showing the lower
level of DNA–DNA reassociation with the type cul�
ture O. angusta CBS 7073 and the type strain Candida
parapolymorpha NRRL Y�7560 (64 and 72%, respec�
tively) is still not quite clear [28]. The latter strain was
isolated from polluted river silt and water and is an
anamorph of the yeast O. parapolymorpha. The cactus
strains are genetically isolated from the species
O. angusta and O. polymorpha and differ from them
karyotypically and in the UP�PCR profiles [19].

The goal of the present work was molecular genetic
identification of the industrially important strain
O. parapolymorpha 1�IR. We have shown that this
strain is capable of efficient fermentation of the prin�
cipal sugars of plant biomass lignocellulose hydroly�
sates at elevated temperatures.

MATERIALS AND METHODS

Strains and media. The strains studied in this work
are presented in Table 1. The species testers of the Sac�
charomyces yeasts were monospore cultures of the fol�
lowing strains: S. cerevisiae X2180�1A, S. arboricola
CBS 10644, S. bayanus VKM Y�1146, S. cariocanus
UFRJ 50816, S. kudriavzevii NBRC 1802, S. mikatae
NBRC 1815, and S. paradoxus CBS 432. The yeasts
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were cultivated on YPD (0.5% yeast extract, 1% pep�
tone, 2% glucose) or minimal YNB (Yeast Nitrogen
Base) media (Difco, United States) without amino
acids (0.67%); 2% glucose, 2% xylose, or 1% metha�
nol were used as a carbon source. The strain
NCYC 495 marked with the leu1�1 auxotrophic muta�
tion was cultivated on the minimal medium with leu�
cine (40 mg/L).

The yeast biomass for alcoholic fermentation of
glucose and xylose was grown in YPD/YPX medium
(1% yeast extract, 2% peptone, 4% glucose/xylose) for
1–2 days on an orbital shaker (200 rpm) at 41°C. Cell
biomass (2 mg/mL) was transferred into the minimal
medium with 10% glucose or 12% xylose. Alcoholic
fermentation was performed on a shaker at 45°C
under limited aeration conditions (140 rpm). Ethanol
concentration in the medium was determined using an
Alcotest kit [29]. The biomass was assayed by turbidi�
metric analysis on a FEK�56M photoelectrocolorim�
eter (3�mm cuvette, light filter no. 6) using gravimetric
calibration. All experiments were performed in tripli�
cate.

Polymerase chain reaction was performed in a Ter�
cyc DNA amplifier (DNA�Technology, Russia)
directly on the yeast cells. A small amount (on the tip
of a microbiological loop) of yeast biomass was sus�
pended in 30 µL of the buffer containing 3 mM
MgCl2, 0.3 mM dNTP, and 50 pmol of each primer.
The resultant mixture was incubated at 95°C for
15 min for cell lysis, followed by the addition of 2.5 U
Taq polymerase (Syntol, Russia). The 26S rDNA
D1/D2 domain and the 5.8S�ITS fragment were
amplified using the following pairs of primers:
NL�1/NL�4 (GCATATCAATAAGCGGAGGAAAG
and GGTCCGTGTTTCAAGACGG), ITS1/ITS4

(5'�TCCGTAGGTGAACCTGCGG and 5'�TCCTC�
CGCTTATTGATATGC). PCR (30 cycles) was per�
formed as follows: denaturing at 94°C, 45 s; annealing
of the primers at 52°C, 30 s; DNA synthesis at 72°C,
120 s. Amplification products were exposed to electro�
phoresis in 1% agarose gel at 60–65 V in 0.5× TBE
buffer (45 mM Tris, 10 mM EDTA, 45 mM boric acid)
for 1.5 h and stained with ethidium bromide.

Sequencing and phylogenetic analysis. The nucle�
otide sequences of the D1/D2 domain were deter�
mined by two chains using the Sanger sequencing
method on a Beckman Coulter automated sequencer
(United States). The homology with the known nucle�
otide sequences was searched with the BLAST soft�
ware. Multiple nucleotide alignment for the obtained
and previously known sequences was performed man�
ually with the BioEdit software package. The phyloge�
netic tree was constructed using the neighbor�joining
method implemented in MEGA5 [30]. The bootstrap
values for statistical reliability of grouping were deter�
mined for 1000 pseudoreplicas.

RESULTS

Isolation and identification. The analyzed strain
1�IR was isolated as a wild microflora of industrial
baker’s yeast Saccharomyces cerevisiae “Red” (the
Netherlands) obtained from the Lvov yeast plant. Plat�
ing and cultivation of the “Red” strain on a complete
agarized medium at 42°C showed the presence of col�
onies containing the cells which were smaller than the
typical cells of Saccharomyces yeasts. The contami�
nant strain 1�IR was able to grow at higher tempera�
tures (up to 48°C), as well as on the media with xylose

Table 1. Origin of the yeast strains under study

Strain, species name
Source and site of isolation

Original strain number Number in other collections

Ogataea angusta

CBS 7073 (T) NRRL Y�2214 Drosophila pseudoobscura, USA

Ogataea parapolymorpha

NRRL YB�1982 (T) CBS 12304 Insect frass, quaking aspen, USA

DL1 NRRL Y�7560 = ATCC 26012 Polluted river silt and water, USA

1�IR Wild microflora of the bakers strain “Red”, Ukraine

Ogataea polymorpha

CBS 4732 (T) NRRL Y�5445 Soil, Brazil

NCYC 495 CBS 1976 = NRRL Y�1798 Spoiled orange juice, USA

Saccharomyces cerevisiae

VKM Y�381 Race XII Distillers yeast

Abbreviations: the All�Russian Collection of Microorganisms, Moscow (VKM); American Type Culture Collection, Manassas, United
States (ATCC); Centraalbureau voor Schimmelcultures, Utrecht, the Netherlands (CBS); National Collection of Yeast Cultures, Nor�
wich, England (NCYC); Agricultural Research Service Culture Collection, National Center for Agricultural Utilization Research, Peo�
ria, Illinois, USA (NRRL). T is the type culture.
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and methanol, which is atypical of the yeast Saccharo�
myces.

At present, the genus Saccharomyces comprises
seven species: S. cerevisiae, S. arboricola, S. bayanus,
S. cariocanus, S. kudriavzevii, S. mikatae, and S. pa�
radoxus [31]. Phenotypically indistinguishable Sac�
charomyces species can be differentiated by sequenc�
ing or restriction analysis of the 5.8S�ITS region
including the 5.8S rRNA gene and internal tran�
scribed spacers ITS1 and ITS2 [32, 33]. The 5.8S�ITS
fragments of strain 1�IR and seven species testers of
Saccharomyces were amplified. The PCR products
were of the same size in all species testers of Saccharo�
myces: approximately 850 bp, while the 5.8S�ITS frag�
ment of the strain 1�IR was about 750 bp (the figure
not shown). This confirmed that the latter strain was
not a member of the genus Saccharomyces.

In the modern taxonomy of yeasts, the species affil�
iation of strains is determined by the 26S rDNA
D1/D2 domain sequencing [34]. The GenBank data�
base of nucleotide sequences of this rDNA region is

used to define the taxonomic position of new strains.
To identify the species affiliation of the strain 1�IR, we
sequenced the 26S rDNA D1/D2 domain. The
obtained nucleotide sequence was compared with the
D1/D2 sequences from the GenBank database.
According to the analysis performed, the strain 1�IR
falls into the species O. parapolymorpha. The phyloge�
netic tree was constructed on the basis of comparative
analysis of D1/D2 nucleotide sequences (figure).
Apart from O. polymorpha (CBS 4732, NCYC 495),
O. angusta (CBS 7073) and O. parapolymorpha
(NRRL YB�1982, DL1, 1�IR), our analysis also
included the type cultures of O. philodendri, NRRL
Y�7210, O. kadamae NRRL Y�17234, O. dorogensis
NRRL Y�27599, O. nonfermentans NRRL YB�2203,
and O. minuta NRRL Y�411. The choice of the five
latter species was determined by their closeness to the
type culture of O. parapolymorpha on the phylogenetic
tree presented in the work [22]. The type culture
O. methanolica NRRL Y�7685 remotely related to the
O. polymorpha complex was used as an outgroup.

O. parapolymorpha DL1

O. parapolymorpha NRRL YB�1982T

O. parapolymorpha 1�IR

O. angusta NRRL Y�2214T

0.02

92

100

58
O. polymorpha NCYC 495

O. polymorpha CBS 4732

O. philodendri NRRL Y�7210T

O. kadamae NRRL Y�17234T

O. dorogensis NRRL Y�27599T

O. nonfermentans NRRL YB�2203T

O. minuta NRRL Y�411T

O. methanolica NRRL Y�7685T

59

Phylogenetic analysis of nucleotide sequences of the 26S rDNA D1/D2 domain of some species of the genus Ogataea. The
D1/D2 sequence of the O. methanolica type culture was used as an outgroup. Bootstrap values are >50%. The scale corresponds
to 20 nucleotide substitutions per 1000 nucleotide positions. T is the type culture.
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Three clusters can be seen on the phylogenetic tree
(figure). The first one with a 100% reliability com�
prises the yeasts O. polymorpha, O. angusta, and
O. parapolymorpha, including the strain 1�IR. The
type culture of O. philodendri joins this cluster with low
statistical support (58%). The type cultures of the spe�
cies O. kadamae, O. dorogensis, O. nonfermentans, and
O. minuta are grouped in pairs in the second and third
cluster, respectively. It should be noted that the statis�
tical support of the latter two clusters is extremely low:
less than 50 and 59%, respectively. The data of phylo�
genetic analysis show the distant relatedness between
the yeasts O. philodendri, O. kadamae, O. dorogensis,
O. nonfermentans, O. minuta, and the species of the
O. polymorpha complex.

Biochemical characteristics of the strain 1�IR. At
present there are 15 known O. parapolymorpha strains
of different ecological and geographical origin within
the United States [22]; however, their industrially
important physiological characteristics have not been
investigated. The two strains of Candida parapolymor�
pha (ATCC 26012, ATCC 58401) that can grow at
45°C are a somewhat exceptional in this respect
[21, 35].

We investigated the fermentation activity of the
strain 1�IR during alcoholic fermentation of xylose
and glucose. The following yeast strains were taken as
the controls: O. polymorpha (NCYC 495 and
CBS 4732), O. parapolymorpha DL1, and the dis�
tiller’s yeast S. cerevisiae VKM Y�381 (Table 1). Alco�
holic fermentation was performed in a liquid minimal
medium with 12% xylose or 10% glucose at 45°C
(Table 2). The productivity of ethanol synthesis during
alcoholic fermentation of xylose was the highest in the
strain 1�IR (10.9 mg/g/h) and the lowest in the strain
O. polymorpha CBS 4732 (5.6 mg/g/h). At the same
time, the strain S. cerevisiae VKM Y�381 did not fer�
ment xylose. More substantial differences between the
strains were revealed in the experiments on alcoholic
fermentation of glucose (Table 2). The productivity
of ethanol synthesis by strain 1�IR was 1.2�, 1.5� and
2�fold higher than in the control strains DL1,
NCYC 495 and CBS 4732, respectively. Ethanol syn�

thesis by the distiller’s yeast S. cerevisiae VKM Y�381
during glucose fermentation was the lowest, probably
due to the elevated fermentation temperature.

Thus, the strain 1�IR surpassed all of the control
strains in the efficiency of alcoholic fermentation of
xylose and glucose at 45°C.

DISCUSSION

In recent years, the interest in ethanol fuel produc�
tion from renewable plant raw materials as an alterna�
tive to nonrenewable sources of energy (oil and gas)
has been growing worldwide. Alcohol production from
starch�containing (rye, wheat, potato, maize) and
sacchariferous (sugarcane, sugar beet) raw materials is
based on fermentation using the conventional yeast
S. cerevisiae. As of today, ethanol fuel is competitively
produced from sugarcane in Brazil and from starch�
containing raw materials in the United States. How�
ever, the available amounts of the starting plant feed�
stock do not meet the growing demand for bioethanol
and may lead to grain deficit and price rise. The
renewable and inedible raw materials, i.e., hydroly�
sates of lignocellulose wastes of agriculture and wood�
working industry, seem to be the most optimal and
promising sources for ethanol biofuel production. The
main component of lignocellulose hydrolysates
(besides glucose) is xylose. The yeast S. cerevisiae can�
not assimilate and especially ferment xylose. In a
number of works, it was attempted to construct S. cer�
evisiae strains capable of alcoholic fermentation of
xylose [36]. However, as yet no substantial progress has
been made in this field because the productivity of
constructed strains is still too low for profitable etha�
nol production. Moreover, S. cerevisiae is a mesophile.
Therefore, it is relevant to search for microorganisms
capable of high�temperature alcoholic fermentation
of xylose and glucose.

The contaminant strain 1�IR retrieved during the
biochemical analysis of the baker’s yeast S. cerevisiae
was identified as O. parapolymorpha. This strain was
shown to be capable of effective fermentation of the
principal sugars of plant biomass lignocellulose
hydrolysates at elevated temperatures. Moreover,
these parameters of the strain 1�IR surpass those of the
yeasts O. parapolymorpha DL1, O. polymorpha CBS
4732 and NCYC 495; the latter two strains were used
in construction of the yeasts capable of active xylose
fermentation at elevated temperatures [7, 12, 13].
Thus, the yeast strain 1�IR is promising for genetic
manipulations aimed at creating competitive strains
for the technology of simultaneous saccharification
and fermentation of lignocellulose.

As we have already mentioned, at present there are
few known O. parapolymorpha strains, probably
because this species has been described only recently
[22]. The closely related species of the O. polymorpha
complex are phenotypically similar and cannot be dif�
ferentiated on the basis of the standard morphological

Table 2. Productivity of ethanol synthesis (mg ethanol/g
yeast biomass/h) by the yeast O. paraqpolymorpha (1�IR,
DL1), O. polymorpha (NCYC 495, CBS 4732), and S. cere�
visiae VKM Y�381

Strain
Ethanol synthesis (mg/g/h)

Xylose Glucose

1�IR 10.9 ± 0.5 393.7 ± 21.1

DL1 7.8 ± 0.4 331.9 ± 15.5

NCYC 495 9.8 ± 0.5 268.7 ± 14.2

CBS 4732 5.6 ± 0.3 192.2 ± 10.1

VKM Y�381 0 142.7 ± 7.1
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and physiological tests. It cannot be excluded that in
many yeast collections the O. parapolymorpha strains
are stored under the species names of O. polymorpha
and/or O. angusta. Molecular analysis of collection
yeasts of the two latter species may reveal the new
strains of O. parapolymorpha capable of efficient fer�
mentation of the principal sugars of plant biomass at
elevated temperatures.
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